Site icon Audit Mania

Transforming Database Interactions with OpenAI GPT-4

To use OpenAI GPT-4 to query your database, you need to follow several steps to integrate the model with your database and create a system that can process natural language queries. Here’s a high-level overview of the process:

1. Set Up Your Environment

2. Connect to the OpenAI API

pip install openai

3. Connect to Your Database

pip install psycopg2  # For PostgreSQL
# or
pip install mysql-connector-python  # For MySQL
import psycopg2

conn = psycopg2.connect(
    dbname="your_db",
    user="your_username",
    password="your_password",
    host="your_host",
    port="your_port"
)

4. Create a Function to Query the Database

def query_database(query):
    cursor = conn.cursor()
    cursor.execute(query)
    result = cursor.fetchall()
    cursor.close()
    return result

5. Integrate GPT-4 with Your Query Function

import openai

openai.api_key = 'your_openai_api_key'

def gpt_to_sql(natural_language_query):
    prompt = f"Convert the following natural language query into SQL: '{natural_language_query}'"
    
    response = openai.Completion.create(
        engine="text-davinci-003",  # Or the relevant model
        prompt=prompt,
        max_tokens=150,
        temperature=0.2,
        n=1,
        stop=None
    )
    
    sql_query = response.choices[0].text.strip()
    return sql_query

def get_data_from_natural_query(natural_language_query):
    sql_query = gpt_to_sql(natural_language_query)
    result = query_database(sql_query)
    return result

# Example usage
natural_query = "Show me all the orders from last month"
data = get_data_from_natural_query(natural_query)
print(data)

6. Handle Errors and Edge Cases

7. Security Considerations

Complete Example

Here’s how all these pieces might fit together in a complete script:

pythonCopy codeimport openai
import psycopg2

# Set up OpenAI API key
openai.api_key = 'your_openai_api_key'

# Connect to your PostgreSQL database
conn = psycopg2.connect(
    dbname="your_db",
    user="your_username",
    password="your_password",
    host="your_host",
    port="your_port"
)

def query_database(query):
    cursor = conn.cursor()
    cursor.execute(query)
    result = cursor.fetchall()
    cursor.close()
    return result

def gpt_to_sql(natural_language_query):
    prompt = f"Convert the following natural language query into SQL: '{natural_language_query}'"
    response = openai.Completion.create(
        engine="text-davinci-003",  # Or the relevant model
        prompt=prompt,
        max_tokens=150,
        temperature=0.2,
        n=1,
        stop=None
    )
    sql_query = response.choices[0].text.strip()
    return sql_query

def get_data_from_natural_query(natural_language_query):
    sql_query = gpt_to_sql(natural_language_query)
    result = query_database(sql_query)
    return result

# Example usage
natural_query = "Show me all the orders from last month"
try:
    data = get_data_from_natural_query(natural_query)
    print(data)
except Exception as e:
    print(f"An error occurred: {e}")

This example provides a framework for transforming natural language queries into SQL using GPT-4 and retrieving data from a database. You can refine and expand this according to your specific use case and requirements.

Here’s the complete script that integrates OpenAI GPT-4 with a database to transform natural language queries into SQL commands and retrieve data:

Complete Code Example

import openai
import psycopg2

# Set up OpenAI API key
openai.api_key = 'your_openai_api_key'

# Connect to your PostgreSQL database
conn = psycopg2.connect(
    dbname="your_db",
    user="your_username",
    password="your_password",
    host="your_host",
    port="your_port"
)

def query_database(query):
    """Executes an SQL query on the database and returns the results."""
    try:
        cursor = conn.cursor()
        cursor.execute(query)
        result = cursor.fetchall()
        cursor.close()
        return result
    except Exception as e:
        print(f"Database query error: {e}")
        return None

def gpt_to_sql(natural_language_query):
    """Converts a natural language query into an SQL query using OpenAI GPT-4."""
    prompt = f"Convert the following natural language query into SQL: '{natural_language_query}'"
    try:
        response = openai.Completion.create(
            engine="text-davinci-003",  # Or the relevant model
            prompt=prompt,
            max_tokens=150,
            temperature=0.2,
            n=1,
            stop=None
        )
        sql_query = response.choices[0].text.strip()
        return sql_query
    except Exception as e:
        print(f"Error converting to SQL: {e}")
        return None

def get_data_from_natural_query(natural_language_query):
    """Processes a natural language query, converts it to SQL, and retrieves data from the database."""
    sql_query = gpt_to_sql(natural_language_query)
    if sql_query:
        result = query_database(sql_query)
        return result
    else:
        return None

# Example usage
natural_query = "Show me all the orders from last month"
try:
    data = get_data_from_natural_query(natural_query)
    if data:
        print(data)
    else:
        print("No data returned.")
except Exception as e:
    print(f"An error occurred: {e}")

Explanation

openai.api_key = 'your_openai_api_key'
conn = psycopg2.connect(
    dbname="your_db",
    user="your_username",
    password="your_password",
    host="your_host",
    port="your_port"
)
def query_database(query):
    """Executes an SQL query on the database and returns the results."""
    try:
        cursor = conn.cursor()
        cursor.execute(query)
        result = cursor.fetchall()
        cursor.close()
        return result
    except Exception as e:
        print(f"Database query error: {e}")
        return None
def gpt_to_sql(natural_language_query):
    """Converts a natural language query into an SQL query using OpenAI GPT-4."""
    prompt = f"Convert the following natural language query into SQL: '{natural_language_query}'"
    try:
        response = openai.Completion.create(
            engine="text-davinci-003",  # Or the relevant model
            prompt=prompt,
            max_tokens=150,
            temperature=0.2,
            n=1,
            stop=None
        )
        sql_query = response.choices[0].text.strip()
        return sql_query
    except Exception as e:
        print(f"Error converting to SQL: {e}")
        return None
def get_data_from_natural_query(natural_language_query):
    """Processes a natural language query, converts it to SQL, and retrieves data from the database."""
    sql_query = gpt_to_sql(natural_language_query)
    if sql_query:
        result = query_database(sql_query)
        return result
    else:
        return None
natural_query = "Show me all the orders from last month"
try:
    data = get_data_from_natural_query(natural_query)
    if data:
        print(data)
    else:
        print("No data returned.")
except Exception as e:
    print(f"An error occurred: {e}")

This script provides a comprehensive example of how to leverage GPT-4 to convert natural language queries into SQL and retrieve data from a PostgreSQL database. Adjust the database connection parameters and API key to suit your environment.

Exit mobile version